166 research outputs found

    A probabilistic framework to define the design stress and acceptable defects under combined-cycle fatigue conditions

    Get PDF
    Abstract Probabilistic routines are necessary to determine the permissible design stress when the operational conditions of traditional gas turbines are further challenged to reach higher performances in terms of flexibility. This paper focuses on the definition of a probabilistic tool aimed to simulate the damage development under combined high and low cycle fatigue conditions considering the stochastic nature of some of the variables introduced in the model. The variables considered in the present study are the long crack threshold Δ K th , LC and the slope of the crack growth law C in the so-called Paris region, the endurance limit Δ σ w 0 and the variability of the applied stress as it cannot be considered a fixed variable in the complex loading scenario of gas turbines. A broad experimental campaign was performed to characterize the material properties in terms of short and long crack resistance under constant and combined cyclic conditions. The data were used to define the average and variance of the materials parameters to feed Montecarlo simulations and, at a target probability of failure, establish the design stress. This work points to determine safety margins which strictly depend on the natural variability of the variables that govern the damage accumulation in the mechanical component

    A Two-Phase Mass Flow Rate Model for Nitrous Oxide Based on Void Fraction

    Get PDF
    In the field of space propulsion, self pressurized technology is an example of innovation capable of improving system performances through reduction of volumes and other optimizations. Potential applications are widespread and not limited to the propulsion panorama: from on-orbit maneuvering to in-orbit servicing, from refueling of satellites at the end of life to in situ resource exploitation for missions headed towards remote objects of the solar system. However, important drawbacks have been reported for these systems: modeling of fluids and thermal phenomena is complex, thus preventing accurate performance predictions. As a result, no comprehensive and accurate model capable of describing the dynamics of a self-pressurizing propellant tank has been developed so far. In this context, this paper proposes a two-phase mass flow rate model based on void fraction. N2O has been selected due to its use as a green and self-pressurized propellant for in-space propulsive applications. The aim of this paper is to describe the current mass flow rate models present in the literature for this fluid and compare the new model with the one proposed by Dyer. A model validation is also offered, and a test campaign is mentioned. Finally, preliminary results are shown and discussed: results are then compared with the ones obtained through the Dyer model, in order to retrieve a comprehensive comparison among the two simulation frameworks. Comments on the results are added, showing the improvements as well as the limitations of the proposed framework

    Validation of a smart mirror for gesture recognition in gym training performed by a vision-based deep learning system

    Get PDF
    This paper illustrates the development and validation of a smart mirror for sports training. The application is based on the skeletonization algorithm MediaPipe and runs on an embedded device Nvidia Jetson Nano equipped with two fisheye cameras. The software has been evaluated considering the exercise biceps curl. The elbow angle has been measured by both MediaPipe and the motion capture system BTS (ground truth), and the resulting values have been compared to determine angle uncertainty, residual errors, and intra-subject and inter-subject repeatability. The uncertainty of the joints’ estimation and the quality of the image captured by the cameras reflect on the final uncertainty of the indicator over time, highlighting the areas of improvement for further development

    Study of strain localizations in a polycrystalline medium in presence of a quasi-static crack

    Get PDF
    Numerical techniques have been widely applied in many recent works to investigate micro-scale behavior of materials. This work focuses on the analysis of strain localizations in a Nickel-based alloy, Haynes 230. Numerical models and experiments concern the study of the strain field generated around the crack tip inside a polycrystalline medium when the crack is quasi-static (not propagating). Experimentally, the tests were conducted in load control; one face of the specimens was monitored by high-resolution Digital Image Correlation (DIC) technique to evaluate the strain field ahead of the crack tip. The simulations were conducted adopting an open source finite element code, Warp3D, which implements a state of art Crystal Plasticity (CP) model. The models of the polycrystalline matrix were created considering the data obtained inspecting the specimen surface by the Electron Back-Scatter Diffraction (EBSD) technique, which allowed defining grains size and orientations. Experimental and numerical results were then compared in terms of strain localizations to evaluate the prediction capabilities of the models. The comparison focused on strain field extension and active grains

    Long-time Low-latency Quantum Memory by Dynamical Decoupling

    Get PDF
    Quantum memory is a central component for quantum information processing devices, and will be required to provide high-fidelity storage of arbitrary states, long storage times and small access latencies. Despite growing interest in applying physical-layer error-suppression strategies to boost fidelities, it has not previously been possible to meet such competing demands with a single approach. Here we use an experimentally validated theoretical framework to identify periodic repetition of a high-order dynamical decoupling sequence as a systematic strategy to meet these challenges. We provide analytic bounds-validated by numerical calculations-on the characteristics of the relevant control sequences and show that a "stroboscopic saturation" of coherence, or coherence plateau, can be engineered, even in the presence of experimental imperfection. This permits high-fidelity storage for times that can be exceptionally long, meaning that our device-independent results should prove instrumental in producing practically useful quantum technologies.Comment: abstract and authors list fixe

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil
    • …
    corecore